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LETTER TO THE EDITOR 

Microscopic model for microemulsions 
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Norway 
5 Departments of Chemistry and Mechanical Engineering, State University of New York, 
Stony Brook, NY 11794, USA 

Received 6 June 1988 

Abstract. We introduce a new microscopic model for microemulsions. The model applies 
to continuum fluids as well as to lattice systems. In a mean-field treatment we show that, 
below a critical temperature, a microemulsion is formed. Different geometrical structures 
of the microemulsion (lamellar, tubular and cubical) also appear. Explicit expressions for 
the surface tension at the three-phase coexistence are found for temperatures equal and 
close to zero. The surface tension is either zero or very low, depending on details of the 
model. 

There has been an increasing interest in studying the properties of microemulsions 
and developing theories based on statistical mechanics to explain the special features 
of such systems. Basically such systems consist of two components-say oil and 
water-that do not mix at room temperature unless a third component, a surfactant, 
is added. The surfactant is a substance whose rod-like molecules have one end attractive 
to water and the other attractive to oil. Thus these molecules prefer to stay at the 
interface between oil and water, and as a result the surface tension is reduced. Due 
to this property the system sometimes prefers to have as many interfaces as possible, 
so that a microemulsion is formed. In this state of the system microscopic oil (or 
water) droplets surrounded by surfactant are dissolved in water (or oil), or thin lamellae 
(layers) of oil and water separated by surfactant are formed. Tube-like structures have 
also been observed [l]. The details of structure will depend upon the experimental 
situation which can be modified by introducing some additive [l ,  21. Experimentally 
the small surface tension of microemulsions is typically 10-2-10-4 times the surface 
tension of the pure oil-water interface [ 1,2]. 

From the viewpoint of theory, microemulsions represent complex multicomponent 
systems where interactions with surfactant molecules depend on orientations. So far 
various models, both phenomenological [3] (a particularly elegant family of 
phenomenological models was introduced earlier by Talmon and Prager [3)] and with 
a basis in statistical mechanics [4-81, have been introduced for which explicit computa- 
tions have been performed [3-81. A common feature of such models is that they are 
designed to take into account the property that surfactant molecules are preferentially 
located between oil and water. Widom has introduced a simple Ising spin model for 
such a system. In the mean-field approximation the one-dimensional version (layered 
states) of his model corresponds to the ANNI model [9]. Schick and Wei-Heng Shih 
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have introduced a spin-1 model [7] of a microemulsion. In both models the surface 
tension is found to be very low. More recently, a third interesting model was studied 
by Chen et d [ 8 ]  (this work builds upon an earlier model introduced by Alexander [SI). 

Here we introduce still another model, which we believe is in some ways closer to 
real systems. It contains only pair interactions that do not have an oscillating behaviour. 
The model is not restricted to lattice systems, but applies to continuum fluids as well. 
In this letter we describe the model and quote some results we have obtained. Details 
will be published in subsequent papers. 

Basically the fluid consists of three species representing water, oil and surfactant 
whose interactions depend on orientation. The orientational dependence is a property 
shared, for instance, by polar fluids which have been extensively treated by statistical 
mechanical methods [ 101. In ordered states, where the surfactant molecules will have 
preferred directions, numerical computation will be complicated due to the continuum 
of orientations. Thus we find it desirable to simplify the model such that in its simplest 
version the surfactant molecules have only two opposing orientations. Two opposing 
orientations in each of d directions are necessary to describe d-dimensional structures; 
thus, in the full d-dimensional version of the simplified model we assume 2d orienta- 
tions of amphiphiles. To do computations on this model we use a trick originally used 
by Onsager, i.e. we regard various orientations of the amphiphile as different species 
of a mixture [ 11, 121. Thus in its one-dimensional version the surfactant in our model 
reduces to two species by which we get a four-component mixture when the oil and 
water are included. In the d-dimensional version there are 2 + 2d species of particles. 
In the one-dimensional version the components are numbered from 1 to 4 in the 
following order; water (0), oil (O), surfactant pointing to the right (OO), and to the 
left (00). In the d-dimensional version particles pointing in +xi and - X I  diiections 
belong to the (2i+ 1)th and to the (2i+2)th components, respectively. In our conven- 
tion either end of a surfactant molecule attracts a particle marked with the same colour. 
Because the two (or 2d)  ‘special’ components consist of the same particles in different 
orientations, the chemical potentials are identically the same and pa = p3 for i 5 3. 

The crucial properties of the interaction potentials in such a mixture are the 
following. 

(i)  Because of the different nature of the ends of the amphiphile, the interaction 
energy u V ( q ,  r # )  between an ‘ordinary’ ( i  = 1,2) and a surfactant (j = 3,4) particle at 
positions r, and r,, respectively, depends on sgn(xj - xi), xi and x: being x’ coordinates 
of molecules. Similarly, in the d-dimensional version the interaction potential uJ r, - 
r , )  depends on sgn(x,k -x:) if i = 1,2 and j = 1 +2k, 2 + 2 k  

(ii) Since, in the absence of a surfactant, oil and water are not miscible, the 
attraction between like ordinary particles is much stronger than the interaction between 
different ones. 

The simplest potentials exhibiting the above properties may be expressed in terms 
of symmetric [ b (  r )  = b( - r ) ]  and antisymmetric [ c ( r )  = - c ( - r ) ]  functions in the follow- 
ing way. Among all particles there is a hard-core interaction. In the lattice case this 
is expressible as the exclusion of multiple occupancy of a cell. (In the simplest version 
of the continuum model it is a ‘parallel hard-cube’ core.) To the core terms one adds 
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It may be noted that, assuming ui i ( r )  = b(r) for all i, we would obtain a modified 
four-state Potts model with a 'screw' interaction ( l b )  added. In the &dimensional 
version additional relations like (1 b) with the (1 + 2j)th and (2 + 2j)th species replacing 
the third and fourth respectively, are assumed. 

The model may be either on a lattice or in a continuum with respect to spatial 
positions. We develop both versions. In the lattice case the system is close packed 
such that each single cell is occupied by one particle. The nearest-neighbour interactions 
in the x' direction are U, = -b for the pair (00) and U, = - c  for the pair (0 00). 
The rest of the interactions are determined by (1). In the XJ direction the interactions 
are the same for the (1 + 2j)th and the (2 + 2j)th types of particles replacing the third 
and fourth kinds, respectively. Both b and c are positive. There are two interaction 
parameters and three chemical potentials in the model. In the close-packed system 
the total number of particles is fixed and the two chemical potentials pi - p 3 ,  i = 1,2, 
are left. We assume full symmetry between oil and water, i.e. p l  = p2 and obtain a 
three-dimensional phase diagram with independent parameters pb, c /  b, p /  b where 
p = p, - p 3  and p = (kBT)-'. kB and T being the Boltzmann constant and the tem- 
perature, respectively. 

Within the Van der Waals (mean-field) theory the thermodynamic potential func- 
tional [13] generalised to a mixture is given by the expression 

R[{Pi(")II = Fh({pl(r)})+i I I d* d*' ui j ( " - " ' )P i ( r )P j ( r ' )  -Pi drpi(r)  I (2) 

where the summation convention for repeated indices i , j  is used. The p i ( r )  is the 
density of the ith component at position r and Fh is the reference-system (hard-core) 
Helmholz free energy. The R takes a minimum for the equilibrium density profile that 
will satisfy the expressions 

with p: the reference-system chemical potential of the ith component. The stability 
condition for the solutions of this equation will be 

Equality in (4) means that the system is at the point of being unstable, i.e. a phase 
transition will take place. The critical point will correspond to the highest temperature 
for which the equality in (4) occurs for the uniform phase ( p i ( r )  = constant). Higher- 
order corrections to R must be positive at this point. Fourier transformed, condition 
(4) takes the form: 

or equivalently 

where u',(k) and c i ( k )  are the Fourier transforms of u, ( r )  and S p i ( r ) ,  respectively. If 
the highest temperature with equality in (6) corresponds to k # 0, then an oscillating 
phase, which can represent a microemulsion, is formed for lower temperatures. 
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Let us consider the microemulsion model defined above. In its simplest four- 
component version p ( r )  = p(x),  and ( 2 )  takes the form 

o [ { ~ i ( ~ ) } l = f h ( { ~ 1 ( ~ ) } ) + ~  I J” d x d x ’ X i j ( x - x ’ ) p i ( x ) p j ( x ’ ) - ~ i  dxPi(x) I (7) 

where o and f are potentials i2 and F per unit area, respectively, and x,(x - x’) are 
the interactions between layers at x and x’. To find the instability we should solve 
equation (6) with u’,(k) replaced by ,fij(k). 

For the actual calculations we assume the following forms for x: 

Assuming ’yb = ’yc = ‘y, and fixing p ,  = p z ,  p 3  = p4 we find the critical temperature and 
the corresponding wavevector to be 

The amplitudes (eigenvector) ci = ci(k) for which the equality in ( 5 )  holds are 

c2 = -c ,  c4 = -c3 = ik,(p3/pl)1/2c,. (11) 

The ci represent the structure of the oscillating phase for small amplitudes of ordering. 
The structure will be a layered one in which oil and water alternate (cz = -cl) .  Likewise 
the two orientations of the surfactant change, phase-shifted an angle 5 ~ / 2  compared 
to oil and water. In the d-dimensional version linear superpositions of one-dimensional 
fluctuations (10) and (11) in different directions will produce tube- and cube-like 
structures. In the lattice case the result is qualitatively the same [14]. 

The ground state of the model considered is determined by the values of the 
parameters b, c and p. In the nearest-neighbour three-dimensional case the T = 0 
phase diagram is presented in figure 1, where the coordinates are s = p + db, t = 2c - b. 
An important feature of the model is that the phases of different geometrical types are 
present at T = 0. For fixed interactions such that 2c > b there are phase transitions 
from pure oil and water to lamellar, from that to tubular, then to cubical and finally 
to pure surfactant phases with decreasing p (increasing surfactant chemical potential). 
The uniform oil- and water-rich phases coexist with lamellar microemulsions only. 
Along the oil-microemulsion-water coexistence line lamellar phases of all possible 
lengths of water and oil segments separated by a single amphiphile are stable. As a 
result the surface tension between oil and water vanishes. 

In the lattice case with second-neighbour interactions u , , ( 2 )  = - b ,  and ~ 1 3 ( 2 )  = -c1 
included, and in the continuum version, the oil-water tension U at the oil-microemul- 
sion-water coexistence does not vanish under all conditions. In the lattice case (d  = 1) 

bl - 2c1 if bl > 2c, 
0 if b ,  < 2c , .  
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Figure 1. The T = 0 phase diagram of the 3D lattice model with nearest-neighbour interac- 
tions. Coordinates are s = p + db and t = 2c - b. Regions I-V correspond to pure oil or 
water, lamellar (4), tubular (4,4)  cubical (4 ,4 ,4)  and pure surfactant phases, respectively. 
Laminar (4) phase has the oscillating structure (0 00 0 00) in one direction and tubular 
(4,4)  and cubical (4 ,4 ,4)  phases have similar oscillating structures in two and three 
directions, respectively. 

In the continuum case (8) the U is non-vanishing for Y b  < yc [14]. The non-zero surface 
tension in both cases is due to the oil and water coexistence with specific finite-period 
microemulsions. 

In the nearest-neighbour case the leading correction to the T = 0 oil-microemulsion- 
water coexistence line has been obtained within the mean-field theory, and for T close 
to zero the coexistence line in figure 1 is shifted to 

2 k ~ T  exp(-dbp) i f s > b  I 2kBT exp{ - [ s  + (d - l)b]P} i f s  < b. (13) 

Within the approximation, in which only the first-order correction to T=O density 
profiles is kept, the oscillating phases of periods p a 6 are stable at the oil-microemul- 
sion-water coexistence line for s < b and all the p a 4 phases are stable for b < s < 4b. 
Thus for s s 4 b  the surface tension also vanishes to first order. For s>4b, however, 
oil and water coexist with the period-4 microemulsion only and the asymptotic 
expression for the surface tension is 

s = t +  

cr = kBT exp( -2dbp) T + 0 .  (14) 
For the pure oil-water interface, cr = b at T = 0. The critical temperature depends on 
surfactant concentration, and kB T, 4 db where equality corresponds to p3 = 0, p1  = 4 
[ 141. This would give the upper estimate U S  db e-2 for all T of interest. 

In the model that we have introduced, the potentials used appear to capture the 
key properties of the interactions between particles in the real systems. There are no 
assumptions such as oscillating potentials, three-body interactions (small in real sys- 
tems), or infinite repulsion between oil and water, beyond the standard hard cores. 
As a result the model is reasonably simple, with only a few independent parameters. 
The model describes microemulsions of diff erent geometrical structures and coexistence 
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between them. The surface tension is zero or very low. Non-symmetric states may 
also be considered. For p 1  >> p 2  (or p 2  >> p l )  cubical micelles are to be expected. The 
somewhat artificial shape of the micelle is the result of the discrete orientations of 
amphiphiles assumed in the model, along with the rectilinear geometry imposed by 
the hard cores. We note that there is no isotropic (disordered) phase at T = 0. In our 
model such a phase can only be expected for T # 0. 
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